Data Visualization:  How to use it to your advantage

We generate data through all of our actions not only from anything we do on the internet but also from anything we do in the offline world. The data we collect is in either numerical or textual format though, making it difficult to understand and find trends until it has been converted to visual forms such as charts or plots. This is where Data Visualization comes in.

What is Data Visualization?

Data visualization is a method that uses visuals, both static and interactive, to help people understand the large amount of data being collected. Data visualization is an important skill in applied statistics and machine learning. It can be helpful when you need to get information from some datasets; the information we can mine from datasets can be about finding patterns and around identifying outliers, and much more. With some prior domain knowledge, visualization can be used to find relationships between the data, which can be insightful to you and your audience

Why Python for Data Visualization?

Python has evolved extensively in every field, be it Automation, Machine Learning, Testing, Scraping etc. Python has grown into a large community which is further fueling the growth with new contributors and ecosystem. 
Python has many visualization tools/libraries which provide excellent features and are easy to implement. It includes support for all types of visual, live, customized charts.
Worth mentioning, below are some of the most used python libraries for data visualization:
  • Matplotlib: It is a low level library, which provides lots of freedom to customize.
  • Pandas Visualization: Built on MatplotlibIt has an easy to use interface and makes visualization a breeze. 
  • Seaborn: It has a high-level interface, and also has great default styles.
  • Bokeh: Supports unique visualizations like Network graphs, Geospatial plots, etc.
  • Plotly: It can create interactive plots.

Step-by-step-data Visualization Process

To get the visualized data, you need to follow the below-mentioned steps:

Collecting Data

The first and most important step of data visualization is gathering data in large amounts. Only after we have substantial data, we can apply data visualization techniques on the collected data and get some helpful insights from it.

Clean your Data

Data cleaning is an essential step to perform before creating a visualization. A bunch of data out of a large dateset which has inappropriate, empty or false values may lead to adding erroneous visuals with anomalies in it. The output received from a data cleaning process is usually a dateset that is free of errors and anomalies etc. which gives much more accuracy when data is processed. Data cleaning is pretty much dependent on the dateset domain that you’re working with.

Choose a Chart Type

Before choosing a visual chart or graph, it is important to understand your audience and then choose a chart or graph accordingly which will best communicate the message.
Choosing a chart totally depends on what findings you need to convey to your audience.
  • Do you want to show how merging of data columns can give meaningful insights?
  • Do you want to show some data patterns from the datasets?
  • Do you want to show how data variables are compared to each other?
  • Do you want to show the relationships between the data variables?
Choosing a couple of these can help to select the charts that will be best suitable for you. This usually requires some playing around with different charts before choosing the best.

Prepare Data

To prepare the data before sending it further for visualization is to determine the type of graph, chart or any other visualizations you need to create and the supporting library you will be integrating for it. After the chart is finalized it may be necessary to transform the data as per requirements. Data preparation tasks include finding data columns that help make some decisions out of it, giving some meaningful insights about data, grouping data, creating aggregate values for groups, combining variables to create new columns, etc.

Visualize Data

In the final step you’ll have the required data you need to create visualizations. Now you can apply all your visualizations skills on the prepared data and represent the data in charts or graphs with meaningful insights.

Types of Data Visualization Charts

Now that we understand how the data visualization process works, we can now apply different data visualization types to their uses. As mentioned in the earlier section by using those visualizations libraries, we can create some visualizations as follows:

Line Chart

Line charts are used to display trends over time. The X-axis is usually used to represent a period, and the Y-axis is used to represent quantity associated with the time period on the X-axis. For e.g: A line chart can illustrate a shopping mall’s peak visit time for the day broken down by week days and hours.

Area Chart

An area chart is a line chart with the areas below the lines filled with colors. Use a stacked area chart to display each value’s contribution to a total over some time.

Bar Chart

A bar chart also displays trends over time. In case of multiple variables, a bar chart can make it easier to compare the data for each variable, every moment in time. For e.g, a bar chart can be used to compare the company’s growth year wise.


A histogram represents data using bars of different heights. Usually, each bar group numbers into ranges in a histogram. Taller the bars more, the data falls in that range. It is used to display the shape and spread of continuous data set samples. For e.g, we can use a histogram to measure each answer’s frequencies in a survey question. The bars would be the answer: “bad,” “good,” and “best”.

Scatter Plot

When there is a need to find the correlations, Scatter plots are used. If there exists a data XY, then a Scatter plot is used to find the relationship between variables X and Y.

Bubble Chart

The bubble chart is evolved from a scatter plot. Where unlike scatter plots each data point is assigned a label or category and shown as a bubble. It is used to show and compare the relationship between the labelled circles. Bubble chart makes it hard to read the chart with multiple bubbles, so it has a limited data set size capacity.

Pie Chart

A pie chart is a circular graph representing the data set in which the slices of pie are divided to represent a numeric proportion. Pie charts are used when there is a need to show the contribution of a data point inside a whole data set.


A gauge chart is evolved from a pie chart and doughnut chart. It is used to visualize the distance between intervals. Multiple gauge charts can be shown linearly to visualize the difference between multiple intervals.


Most of the data collected has a location variable, which makes it easy to plot on a map. An e.g, of a map visualization is mapping the number of customers all over the world country wise, where each country would represent a number of customers. Location information can help businesses to grow their business in a particular region where the business has not scattered compared to other regions.

Heat Map

A heat map is a visualization tool that uses color the way a bar chart uses its height and width. Two dimensions are shown as a magnitude of a phenomenon. The heat map illustrates it can be used to identify whether the phenomenon is clustered or varies over space.

Data Visualization: Importance and Benefits

It is difficult for humans to understand the data in numeric format because of its complexity and a large amount of data. That’s where data visualizations come into the picture as it makes it easy to understand the data, and it allows the decision-makers to act more quickly.
  • With the help of data visualization, decision-makers can easily understand how the data is being interpreted to determine business variations.
  • A large amount of data is handled and is visualized to establish patterns in the data. Many meaningful insights and the evidence behind the data can be used to establish a business goal.
  • Visualizing the data helps manage achieve growth and use the new pattern trends found in business strategies.
  • Data analysts’ job is to make it easy to make new decisions for business development and expansion by using trends from the data with the help of data visualization.

Why Mindbowser

Our experience and agile team of full-stack engineers, data scientists, and mobile app developers accelerate innovation and implementation of customization ML and AI products. Our experts bring vast cross-industry expertise supported by scientific rigor and in-depth knowledge of advanced techniques to design, develop, and deploy bespoke Artificial Intelligence solutions.
Whyy Mindbowser


In this blog, we’ve covered data visualization, it’s uses and benefits to businesses. The blog can be a start to help you decipher How we can implement Data Visualization and which are the most useful strategies to achieve data visualizations. 

subscribe to our newsletter


About Author

Image from iOS (2)

Shubham Yadav

Shubham is a Lead Python developer with 3+ years of experience. He is very passionate about his work. He is always eager to learn new programming skills and technologies and looking for new ways to optimize the development process. His areas of expertise are in Building Machine Learning models, Creating REST APIs in Django/Flask, Web Scraping and Writing Automation Scripts for businesses.
Related Posts

Leave a Comment